Measuring Invariances in Deep Networks

Measuring Invariances in Deep Networks
Abstract

For many pattern recognition tasks, the ideal input feature would be invariant to multiple confounding properties (such as illumination and viewing angle, in computer vision applications). Recently, deep architectures trained in an unsupervised manner have been proposed as an automatic method for extracting useful features. However, it is difficult to evaluate the learned features by any means other than using them in a classifier. In this paper, we propose a number of empirical tests that directly measure the degree to which these learned features are invariant to different input transformations. We find that stacked autoencoders learn modestly increasingly invariant features with depth when trained on natural images. We find that convolutional deep belief networks learn substantially more invariant features in each layer. These results further justify the use of “deep” vs. “shallower” representations, but suggest that mechanisms beyond merely stacking one autoencoder on top of another may be important for achieving invariance. Our evaluation metrics can also be used to evaluate future work in deep learning, and thus help the development of future algorithms.